Stochastic Gradient Descent in Continuous Time
نویسندگان
چکیده
We consider stochastic gradient descent for continuous-time models. Traditional approaches for the statistical estimation of continuous-time models, such as batch optimization, can be impractical for large datasets where observations occur over a long period of time. Stochastic gradient descent provides a computationally efficient method for such statistical learning problems. The stochastic gradient descent algorithm performs an online parameter update in continuous time, with the parameter updates θt satisfying a stochastic differential equation. We prove that limt→∞∇ḡ(θt) = 0 where ḡ is a natural objective function for the estimation of the continuous-time dynamics. The convergence proof leverages ergodicity by using an appropriate Poisson equation to help describe the evolution of the parameters for large times. Numerical analysis of the stochastic gradient descent algorithm is presented for several examples, including the Ornstein-Uhlenbeck process, Burger’s stochastic partial differential equation, and reinforcement learning.
منابع مشابه
Identification of Multiple Input-multiple Output Non-linear System Cement Rotary Kiln using Stochastic Gradient-based Rough-neural Network
Because of the existing interactions among the variables of a multiple input-multiple output (MIMO) nonlinear system, its identification is a difficult task, particularly in the presence of uncertainties. Cement rotary kiln (CRK) is a MIMO nonlinear system in the cement factory with a complicated mechanism and uncertain disturbances. The identification of CRK is very important for different pur...
متن کاملRecognition of Human Activities Using Continuous Autoencoders with Wearable Sensors
This paper provides an approach for recognizing human activities with wearable sensors. The continuous autoencoder (CAE) as a novel stochastic neural network model is proposed which improves the ability of model continuous data. CAE adds Gaussian random units into the improved sigmoid activation function to extract the features of nonlinear data. In order to shorten the training time, we propos...
متن کاملStochastic Submodular Maximization: The Case of Coverage Functions
Stochastic optimization of continuous objectives is at the heart of modern machine learning. However, many important problems are of discrete nature and often involve submodular objectives. We seek to unleash the power of stochastic continuous optimization, namely stochastic gradient descent and its variants, to such discrete problems. We first introduce the problem of stochastic submodular opt...
متن کاملContinuous-Time Limit of Stochastic Gradient Descent Revisited
Stochastic Gradient Descent (SGD) is an important algorithm in machine learning. With constant learning rates, it is a stochastic process that reaches a stationary distribution. We revisit an analysis of SGD in terms of stochastic differential equations in the limit of small constant gradient steps. This limit, which we feel is not appreciated in the machine learning community, allows us to app...
متن کاملTrain faster, generalize better: Stability of stochastic gradient descent
We show that parametric models trained by a stochastic gradient method (SGM) with few iterations have vanishing generalization error. We prove our results by arguing that SGM is algorithmically stable in the sense of Bousquet and Elisseeff. Our analysis only employs elementary tools from convex and continuous optimization. We derive stability bounds for both convex and non-convex optimization u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Financial Math.
دوره 8 شماره
صفحات -
تاریخ انتشار 2017